Electrochemical Studies of C_{60} -Triosmium Complexes: First Evidence for a C_{60} -Mediated Electron Transfer to the Metal Center

Joon T. Park,* Jeong-Ju Cho, Hyunjoon Song, Chang-Soo Jun, Youngbae Son, and Juhyoun Kwak*

Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea

Received December 19, 1996

In recent years the organometallic chemistry of C_{60} has attracted much attention concerning the effect of metal coordination on the physical and chemical properties of C_{60} .¹ The electrochemistry of C60 itself has been extensively studied, and free C₆₀ is known to be a fairly electronegative carbon cluster being reducible up to C_{60}^{6-2} . However, little is known about the electrochemical properties of organometallic C_{60} derivatives, although a few examples have appeared for $(\eta^5-C_9H_7)Ir(CO)$ - $(\eta^2 - C_{60})^3$ and $[(Et_3P)_2M]_n(\eta^2 - C_{60})$ (M = Ni, Pd, Pt; $n = 1 - 4)^4$ complexes, which revealed C₆₀-localized sequential reductions. Some of us have recently characterized C₆₀-triosmium complexes, ⁵ Os₃(CO)₁₁(η^2 -C₆₀) (1), ⁶ Os₃(CO)₁₀(PPh₃)(η^2 -C₆₀) (2), and $Os_3(CO)_9(PPh_3)_2(\eta^2-C_{60})$ (3). We herein report cyclic voltammetric and IR spectroelectrochemical studies of complexes 1-3, which provide the first examples of a C₆₀-mediated electron transfer to the metal centers.

Typical cyclic voltammograms (CV's) and proposed overall electrochemical pathways of 1 are shown in Figure 1 and Scheme 1, respectively. Half-wave potentials $(E_{1/2})$ of 1-3 and other known C_{60} complexes are summarized in Table 1. The fast scan CV (a) exhibits two reversible reduction waves at $E_{1/2}$ = -1.08 and -1.31 V. The first reduction wave at $E_{1/2}$ = -1.08 V of **1** is slightly more negative than that of free C₆₀ at -1.05 V, which is consistent with the metal-to-C₆₀ π -backdonation as was shown in other previous C60-metal complexes3,4 (see Table 1). The direct metal center reductions of $Os_3(CO)_{12}$ (4) and $Os_3(CO)_{11}(\eta^2 - dmfu)^7$ (5, $dmfu = trans-MeO_2CHC =$ CHCO₂Me) have been observed at far more negative potentials, -2.02 V for 4 and -1.71 V for 5 under conditions identical to those for 1. These results indicate that reduction of 1 by one electron occurs via the coordinated C₆₀ ligand. However, the second reduction wave at -1.31 V unusually appears at a more positive potential than that of the free C_{60} at -1.41 V. If an electron in 1^- is localized at the C₆₀ ligand, the second reduction

- (a) Bowser, J. R. Adv. Organomet. Chem. 1994, 36, 57. (b) Fagan, P. J.; Calabrese, J. C.; Malone, B. Acc. Chem. Res. 1992, 25, 134.
- (2) (a) Xie, Q.; Perez-Cordero, E.; Echegoyen, L. J. Am. Chem. Soc. 1992, 114, 3978. (b) Ohsawa, Y.; Saji, T. J. Chem. Soc., Chem. Commun. 1992, 781. (c) Fhou, F.; Jehoulet, C.; Bard, A. J. J. Am. Chem. Soc. 1992, 114, 11004.
- (3) Koefod, R. S.; Xu, C.; Lu, W.; Shapley, J. R.; Hill, M. G.; Mann, K. R. J. Phys. Chem. 1992, 96, 2928.
- (4) Lerke, S. A.; Parkinson, B. A.; Evans, D. H.; Fagan, P. J. J. Am. Chem. Soc. 1992, 114, 7807.
- (5) Park, J. T.; Cho, J.-J.; Song, H. J. Chem. Soc., Chem. Commun. 1995, 15.
- (6) A single-crystal structure of $1 \cdot CH_2Cl_2$ has been obtained and will be reported elsewhere. The $\eta^2 \cdot C_{60}$ ligand occupies an equatorial position.
- (7) (a) The fumarate ligand has been proposed to have a similar electron-withdrawing property to that of free C₆₀ by Shapley and co-workers: Shapley, J. R.; Du, Y.; Koefod, R. S. *Proceedings of Korea-U.S. Inorganic Chemistry Conference*; 1993, 9. (b) Complex **3**: ¹H NMR (CDCl₃, 25 °C) δ 3.87 (d, 1H, ³J_{HH} = 8.9 Hz), 3.78 (s, 3H), 3.69 (s, 3H), 3.61 (d, 1H, ³J_{HH} = 8.9 Hz); IR (C₆H₁₂) ν(CO) 2123 (m), 2070 (s), 2065 (sh), 2037 (vs), 2017 (s), 2005 (m), 1991 (w), 1967 (vw) cm⁻¹.
- (8) This unknown oxidation peak shifts to more positive potentials at intermediate scan rates and finally merges into a single peak with the $C_{60}^{-/0}$ peak at -1.02 V. Note that the peak current of $C_{60}^{-/0}$ in the CV (c) is larger than those of $C_{60}^{2-/-}$ and $C_{60}^{3-/2-}$ owing to the merger of the two oxidation peaks.

Figure 1. Cyclic voltammograms of **1** at a platinum electrode (1.6 mm diameter disk) in a dry deoxygenated mixed solvent (0.1 M [(n-Bu)_4N]ClO₄ in 4:1 dichloromethane (DM)-toluene (Tol)): $E_{\lambda} = -1.42$ V for (a) and (b), -2.22 V for (c) and (d); scan rate = 20.48 V/s for (a) and (c), 0.10 V/s for (b) and (d). A peak⁸ indicated by \bullet is due to an irreversible oxidation of either Os₃(CO)₁₁⁻ or an unknown species derived from Os₃(CO)₁₁⁻.

Scheme 1

* The electron-localized moiety $Os_3(CO)_{11}$ $Os_3(CO)_{11}$

potential should be also more negative than that of free C₆₀. This unusual opposite potential shift suggests that the electron density of the C₆₀ ligand in anion **1**⁻ is less than that of free C₆₀⁻. This implies that the first electron accepted *via* the C₆₀ ligand in **1**⁻ is delocalized to the triosmium center with its strong π -acid carbonyl ligands (see Scheme 1). Anionic species **1**⁻ with electron delocalization to the osmium center, therefore, undergoes easier reduction *via* the C₆₀ ligand than free C₆₀⁻ to afford **1**²⁻. Species **1**²⁻ undergoes slow decomposition, because the slow scan CV (b) reveals only one oxidation peak at -1.02 V which is attributed to the oxidation of free C₆₀⁻.

The CV's of (c) and (d) in Figure 1 at the two different scan rates have been recorded by changing the switching potential from -1.42 to -2.22 V to study further stepwise reductions of 1. The reduction peak of $1^{2-/3-}$ is observed at a potential of -1.61 V in the fast scan CV (c), while it is not observable in the slow scan CV (d), in which case 1^{2-} has already decomposed

Inorganic Chemistry, Vol. 36, No. 13, 1997 2699

Table 1. Half-Wave Potentials ($E_{1/2}$ vs E°_{Fc/Fc^+}) of C₆₀ and M(η^2 -C₆₀) Complexes^a

complex	$E_{1/2}^{0/-1}$	$E_{1/2}^{-1/-2}$	$E_{1/2}^{-2/-3}$	solvent	ref
C ₆₀	-1.05 (-1.08)	-1.41 (-1.44)	-1.87 (-1.90)	DM/Tol	с
1	-1.08(-1.12)	-1.31 (-1.34)	b (-1.61)	DM/Tol	С
2	-1.16 (-1.18)	-1.44(-1.49)	b (-1.68)	DM/Tol	с
3	-1.19 (-1.21)	-1.53 (-1.56)	b (-1.76)	DM/Tol	С
C_{60}	-1.00	-1.39	-1.81	DM	3
$Ir(\eta^{5}-C_{9}H_{7})(CO)(\eta^{2}-C_{60})$	-1.08	-1.43		DM	3
C ₆₀	-0.86	-1.44	-2.00	THF	4
$(Et_3P)_2Pt(\eta^2-C_{60})$	-1.20	-1.73	-2.27	THF	4
$(Et_3P)_2Pd(\eta^2-C_{60})$	-1.18	-1.69	-2.23	THF	4
$(Et_3P)_2Ni(\eta^2-C_{60})$	-1.20	-1.74	-2.32	THF	4

^{*a*} The cathodic peak potentials (E_{pc}) at the scan rate of 20.48 V/s are in parentheses. ^{*b*} Half-wave potentials could not be obtained due to very fast decomposition of $1^{3-} - 3^{3-}$. ^{*c*} This work.

producing C_{60}^{-} and $Os_3(CO)_{11}^{-}$ as shown in eq 1 of Scheme 1. The other two possible decomposition pathways of 1^{2-} producing C_{60}^n (n = 0, -2) are excluded on the basis of the current intensity ratio (ca. 1:1) of the peaks due to $1^{-/2-}$ and $C_{60}^{-/2-}$ in CV (d). In the slow scan CV (d), all 1^{2-} decomposed to generate free C_{60}^{-} , which is responsible for both the third reduction peak ($C_{60}^{-/2-}$) at -1.44 V and the fourth reduction peak ($C_{60}^{2-/3-}$) at -1.90 V. The fourth reduction peak at a potential of -1.90 V is observed for both slow and fast scan rates, which is due to the reduction of C_{60}^{2-} to C_{60}^{3-} and is indicative of fast decomposition of 1^{3-} . Decomposition of 1^{3-} to C_{60}^{2-} and $Os_3(CO)_{11}^{-}$ appears to be the predominant pathway as shown in eq 2 of Scheme 1. A similar analogy to the previous decomposition mechanism of 1^{2-} excludes the other three possible decomposition pathways of 1^{3-} producing $Os_3(CO)_{11}^{n-}$ (n = 0, 2, 3). Furthermore, the fact that the reduction (-1.61 V) of 1^{2-} is much easier than that (-1.90 V) of C_{60}^{2-} strongly supports the conclusion that the electron density in 1^{2-} is also delocalized to the triosmium center (see Scheme 1). The three oxidation peaks at potentials of -1.83, -1.38, and -1.02 V in both CV's of (c) and (d) are due to the three stepwise oxidation of C_{60}^{3-} back to C_{60} .

The cyclic voltammetric data of **2** and **3** are listed in Table 1. The first reduction potentials of both **2** and **3** have been observed shifted to more negative potentials relative to **1** by 0.08 and 0.11 V, respectively, reflecting the electron-donating nature of the phosphine ligands. The second reduction potentials of **2** and **3** are more negative than that of free C₆₀. The third reduction peak potentials of both **2** (-1.68 V) and **3** (-1.76 V) are more positive than that of free C₆₀ (-1.90 V), revealing that a similar C₆₀-mediated electron transfer occurs in these complexes.

Definitive evidence for the C₆₀-mediated electron transfer to the triosmium center was obtained by both an IR spectroelectrochemical study of **1** and characterization⁹ of $[NiCp'_2]^+1^-$ (**6**, $Cp' = \eta^5$ -C₅Me₅). The IR spectrum of 1^- obtained by the IR spectroelectrochemical study is rather poorly defined, presum-

ably, because of the instability of 1^- during the spectroelectrochemical experiment. Nevertheless the general features of the IR spectrum of 1^- are similar to 1 but shifted to lower energies compared to that of 1. In order to obtain a clear IR spectrum of 1^- , complex 6 has been prepared and characterized. The carbonyl region IR spectrum of $\mathbf{6}$ is now well defined and quite similar to that of 1^{-} . The carbonyl bands of 6^{9} are also shifted to lower energies by $ca. 40-50 \text{ cm}^{-1}$ compared to those of 1 [2123 (s), 2076 (s), 2058 (m), 2038 (vs), 2015 (m), 2005 (m) cm⁻¹ in THF], reflecting the electron density in 1^{-} is localized at the metal centers. Reduction of triosmium carbonyl complexes by one electron typically results in a change in ν_{CO} on the order of $\sim 50 \text{ cm}^{-1.10}$ If an electron is localized on the C_{60} ligand, a small shift in ν_{CO} (~10 cm⁻¹) is expected.³ The IR spectroelectrochemical study of 2^- reveals a similar change but very poorly defined spectrum, and thus an electron transfer mechanism analogous to that of 1^- seems to occur. However, the IR spectrum of 3^- during the spectroelectrochemical study remains the same as that of **3**. This observation, together with the CV data, indicates that appreciable electron delocalization takes place only after the second reduction of 3 due to the donor effect of the two phosphine ligands. The IR spectroelectrochemical data of the dianions 1-3 could not be obtained, because reductions of 1-3 at a potential just negative of the respective second wave resulted in extensive decomposition.⁴

In conclusion, we have demonstrated that a C_{60} -mediated electron transfer to the metal center takes place in C_{60} -triosmium carbonyl complexes, **1**–**3**, which may afford a possible electron transfer pathway in C_{60} -derived materials. Intense efforts are currently underway in our laboratory to explore the electron transfer mechanism in C_{60} -triosmium complexes.

Acknowledgment. We are grateful to both the Korea Science and Engineering Foundation and the Korea Advanced Institute of Science and Technology for financial support of this research.

Supporting Information Available: Summaries of both cyclic voltammetric and IR spectroelectrochemical experiments of 1 and a figure showing both IR spectra of 1^- obtained by an IR spectroelectrochemical study of 1 and from complex 6 (2 pages). Ordering information is given on any current masthead page.

IC961504U

^{(9) (}a) The synthesis and structure of [NiCp'₂]⁺[C₆₀]⁻ have been recently reported: Wan, W. C.;Liu, X.; Sweeney, G. M.; Broderick, W. E. J. Am. Chem. Soc. **1995**, 117, 9580. (b) Complex **6**: ¹H NMR (THF-d₈, 24 °C) δ 105.0 (br, s); IR (THF) ν(CO) 2073 (s), 2029 (s), 1994 (vs), 1986 (sh), 1973 (m), 1949 (m) cm⁻¹. Anal. Calcd for C₉₁H₃₀O₁₁-NiOs₃: C, 56.68; H, 1.57. Found C, 56.13; H 1.76. (c) Note that the methyl proton resonance (δ 105.0) of paramagnetic **6** is shifted downfield by *ca*. 140 ppm compared to that of Cp'₂Ni (δ 244.6), implying the monocationic nature of [NiCp'₂]⁺.

 ^{(10) (}a) Eady, C. R.; Johnson, B. F. G.; Lewis, J.; Malatesta, M. C. J. Chem. Soc., Dalton Trans. 1978, 1358. (b) Nagel, C. C.; Bricker, J. C.; Alway, D. G.; Shore, S. G. J. Organomet. Chem. 1981, 219, C9.